Abstract

Feral populations of cultivated crops can act as reservoirs for novel genetically engineered (GE) traits and aid in trait movement at the landscape level. However, little information is available on the potential of cultivated crops to become feral. In this study, we investigated the ferality of alfalfa populations (non-GE version) occurring in roadside habitats. Knowledge on the nature of roadside alfalfa populations would be useful for designing efficient trait confinement protocols and coexistence strategies in alfalfa. We investigated roadside alfalfa populations from 2006 to 2009 in three rural municipalities (Hanover, MacDonald, and Springfield) in Southern Manitoba, Canada. We studied the demography of these populations including seedbank, seedling recruitment, and fecundity and examined the impact of road verge mowing on key life stages of these populations. We also compared the growth and reproductive attributes of roadside and cultivated alfalfa populations. Alfalfa is reproductively successful in roadside habitats and capable of establishing self-perpetuating populations. A substantial portion of the alfalfa seeds we extracted from seedbank samples were viable but not germinable, suggesting some degree of seedbank persistence in roadside habitats. In the roadside habitat, alfalfa seedlings recruited successfully, however, seedling mortality was high when seedlings were in close proximity to well-established alfalfa plants. Mowing dramatically reduced the reproductive success of roadside alfalfa. Generally, the growth and reproduction of roadside alfalfa was comparable to cultivated alfalfa except for total fecundity. Considering the long lifespan (>10 years) of alfalfa and the levels of fecundity, seedbank, and seedling survival we observed, long-term persistence of roadside alfalfa populations seems reasonable. In the context of novel trait confinement, our results suggest that feral alfalfa populations required to be managed if there is a desire/need to confine novel traits in alfalfa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.