Abstract

The present study deals with the physicochemical characterization of DPPC:DPPG (9:1 molar ratio) and DPPC:DODAP (9:1 molar ratio) liposomes, and the determination of their fractal dimension in HPLC-grade water, PBS and in FBS. Light scattering techniques were used in order to extract information on the structure, morphology, size and surface charge of liposomes in an ageing study and their structural response to changes in concentration and temperature. Fluorescence spectroscopy showed that the microviscosity of cationic liposomes changed by an increase of temperature. The fractal dimension, d(f), was found equal to 1.8 for reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in aqueous media. Aggregation of reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in FBS was observed. Their fractal dimensions were 1.46 and 2.45, respectively. The first order aggregation kinetics of DPPC:DODAP (9:1) liposomes in the presence of serum proteins was determined; the aggregates of cationic liposomes with serum components remained stable during 20 days with fractal dimension 2.5. The responsiveness of cationic liposomes to changes in temperature in the three dispersion media has revealed the self-assembly and the morphological complexity of cationic vectors. Finally, we suggest that these studies could be used for developing effective advanced drug delivery nano-systems (aDDnSs) based on their fractal characteristics which effectively draw their morphological profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call