Abstract

Multi-configurational approaches yield universal wave function parametrizations that can qualitatively well describe electronic structures along reaction pathways. For quantitative results, multi-reference perturbation theory is required to capture dynamic electron correlation from the otherwise neglected virtual orbitals. Still, the overall accuracy suffers from the finite size and choice of the active orbital space and peculiarities of the perturbation theory. Fortunately, the electronic wave functions at equilibrium structures of reactants and products can often be well described by single-reference methods and hence are accessible to accurate coupled cluster calculations. Here, we calculate the heterolytic double dissociation energy of four 3d-metallocenes with the complete active space self-consistent field method and compare to highly accurate coupled cluster data. Our coupled cluster data are well within the experimental error bars. This accuracy can also be approached by complete active space calculations with an orbital selection based on information entropy measures. The entropy based active space selection is discussed in detail. We find a very subtle balance between static and dynamic electron correlation effects that emphasizes the need for algorithmic active space selection and that differs significantly from restricted active space results for identical active spaces reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.