Abstract
<p style='text-indent:20px;'>Various flocking results have been established for the delayed Cucker-Smale model, especially in the long range communication case. However, the short range communication case is more realistic due to the limited communication ability. In this case, the non-flocking behavior can be frequently observed in numerical simulations. Furthermore, it has potential applications in many practical situations, such as the opinion disagreement in society, fish flock breaking and so on. Therefore, we firstly consider the non-flocking behavior of the delayed Cucker<inline-formula><tex-math id="M2">\begin{document}$ - $\end{document}</tex-math></inline-formula>Smale model. Based on a key inequality of position variance, a simple sufficient condition of the initial data to the non-flocking behavior is established. Then, for general communication weights we obtain a flocking result, which also depends upon the initial data in the short range communication case. Finally, with no restriction on the initial data we further establish other large time behavior of classical solutions.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.