Abstract

Moss plants appear in the early stages of land colonization and possess varying degrees of dehydration tolerance. In this study, a protein called PpFAS1.3 was identified, which contains a fasciclin 1-like domain and is essential for the moss Physcomitrium patens' response to short-term rapid dehydration. When the FAS1.3 protein was knocked out, leafyshoots showed a significant decrease in tolerance to rapid dehydration, resulting in accelerated water loss and increased membrane leakage. Phylogenetic analysis suggests that PpFAS1.3 and its homologous proteins may have originated from bacteria and are specifically found in non-vascular plants like mosses and liverworts. As a dehydration-related protein, FAS1.3 plays a significant role in regulating lipid metabolism, particularly in the synthesis of free fatty acids (FFA) and the metabolism of two phospholipids, PC and PA. This discovery highlights the close connection between PpFAS1.3 and lipid metabolism, providing new insights into the molecular mechanisms underlying plant adaptation to stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call