Abstract
We study the degree of the Gauss map of the theta divisor of principally polarised complex abelian varieties. We use this to obtain a bound on the multiplicity of the theta divisor along irreducible components of its singular locus, and apply this bound in examples, and to understand the local structure of isolated singular points. We further define a stratification of the moduli space of ppav's by the degree of the Gauss map. In dimension four, we show that this stratification gives a weak solution of the Schottky problem, and we conjecture that this is true in any dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.