Abstract
The “degree of rate control” (DRC) is a mathematical approach for analyzing multistep reaction mechanisms that has proven very useful in catalysis research. It identifies the “rate-controlling transition states and intermediates” (i.e., those whose DRCs are large in magnitude). Even in mechanisms with over 30 intermediates and transition states, these are generally just a few distinct chemical species whose energies, if they could be independently changed, would achieve a faster net reaction rate to the product of interest. For example, when there is a single “rate-determining step”, the DRC for its transition state (TS) is 1, which means (by definition) that if this TS’s energy could be decreased by kBT (where kB is Boltzmann’s constant and T is temperature), the net rate would increase by a factor of e. Because the (relative) energies of these key adsorbed intermediates and transition states can be adjusted by modifying the catalyst or solvent, or even a reactant’s molecular structure, the DRC values pr...
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.