Abstract
BackgroundThe human microflora is known to be extremely complex, yet most pathogenesis research is conducted in mono-species models of infection. Consequently, it remains unclear whether the level of complexity of a host's indigenous flora can affect the virulence potential of pathogenic species. Furthermore, it remains unclear whether the colonization by commensal species affects a host cell's response to pathogenic species beyond the direct physical saturation of surface receptors, the sequestration of nutrients, the modulation of the physico-chemical environment in the oral cavity, or the production of bacteriocins. Using oral epithelial cells as a model, we hypothesized that the virulence of pathogenic species may vary depending on the complexity of the flora that interacts with host cells.ResultsThis is the first report that determines the global epithelial transcriptional response to co-culture with defined complex microbiota. In our model, human immortalized gingival keratinocytes (HIGK) were infected with mono- and mixed cultures of commensal and pathogenic species. The global transcriptional response of infected cells was validated and confirmed phenotypically. In our model, commensal species were able to modulate the expression of host genes with a broad diversity of physiological functions and antagonize the effect of pathogenic species at the cellular level. Unexpectedly, the inhibitory effect of commensal species was not correlated with its ability to inhibit adhesion or invasion by pathogenic species.ConclusionStudying the global transcriptome of epithelial cells to single and complex microbial challenges offers clues towards a better understanding of how bacteria-bacteria interactions and bacteria-host interactions impact the overall host response. This work provides evidence that the degree of complexity of a mixed microbiota does influence the transcriptional response to infection of host epithelial cells, and challenges the current dogma regarding the potential versus the actual pathogenicity of bacterial species. These findings support the concept that members of the commensal oral flora have evolved cellular mechanisms that directly modulate the host cell's response to pathogenic species and dampen their relative pathogenicity.
Highlights
The human microflora is known to be extremely complex, yet most pathogenesis research is conducted in mono-species models of infection
We investigated whether the presence of an oral commensal in co-culture with gingival epithelial cells and P. gingivalis in a mixed microbial challenge would impact the epithelial response
The interaction characteristics of P. gingivalis with human immortalized gingival keratinocytes (HIGK) in mono- and mixed cultures were first investigated to establish the baseline of this system
Summary
The human microflora is known to be extremely complex, yet most pathogenesis research is conducted in mono-species models of infection It remains unclear whether the level of complexity of a host's indigenous flora can affect the virulence potential of pathogenic species. A separate group has described the capability of S. cristatus and certain other streptococcal species to dampen the IL8 response induced by infection with the periodontal pathogen Fusobacterium nucleatum in four different epithelial cell lines. These observations demonstrate that polymicrobial infection of epithelial cells with oral streptococcal species and commonly associating pathogens can attenuate the proinflammatory effects elicited during infection of these cells with the pathogens [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.