Abstract

The deceleration capacity (DC) and acceleration capacity (AC) of heart rate are a pair of indices used for evaluating the autonomic nervous system (ANS). We assessed the role of heart rate asymmetry (HRA) in defining the relative performance of DC and AC using a mathematical model, which is able to generate a realistic RR interval (RRI) time series with controlled ANS states. The simulation produced a set of RRI series with random sympathetic and vagal activities. The multi-scale DCs and ACs were computed from the RRI series, and the correlation of DC and AC with the ANS functions was analyzed to evaluate the performance of the indices. In the model, the HRA level was modified by changing the inspiration/expiration (I/E) ratio to examine the influence of HRA on the performances of DC and AC. The results show that on the conventional scales (T=1, s=2), an HRA level above 50% results in a stronger association of DC with the ANS, compared with AC. On higher scales (T=4, s=6), there was no HRA and DC showed a similar performance to AC for all I/E ratios. The data suggest that the HRA level determines which of DC or AC is the optimal index for expressing ANS functions. Future clinical applications of DC and AC should be accompanied by an HRA analysis to provide a better index for assessing ANS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call