Abstract
We demonstrate a new femtosecond visible pump/mid-IR probe spectroscopic approach to assess directly the ground- and excited-state degrees of charge transfer (CT) in donor-spacer-acceptor (D-Sp-A) structures. Two classes of (porphinato)zinc(II) (PZn)-based D-Sp-A compounds with either quinonyl (Q) or N-(N'-octyl)pyromellitic diimide (PI) electron acceptors were interrogated. Carbonyl antisymmetric stretching mode frequency domain transient-IR spectra of these species were recorded and analyzed for the Q/PI moieties. These data show that the acceptor mode frequency shift, DeltanuA, determined by this method provides a more accurate measure of the degree of CT in ground and charge-separated states relative to other techniques which rely on the ground-state frequency shift alone. This approach enables determination of new experimental benchmarks to test the power of complimentary computational methods and provides a means to probe the degree of CT in transitions that either overlap strongly with other bands or possess low oscillator strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.