Abstract
AbstractWe study the degree‐diameter problem for claw‐free graphs and 2‐regular hypergraphs. Let be the largest order of a claw‐free graph of maximum degree Δ and diameter D. We show that , where , for any D and any even . So for claw‐free graphs, the well‐known Moore bound can be strengthened considerably. We further show that for with (mod 4). We also give an upper bound on the order of ‐free graphs of given maximum degree and diameter for . We prove similar results for the hypergraph version of the degree‐diameter problem. The hypergraph Moore bound states that the order of a hypergraph of maximum degree Δ, rank k, and diameter D is at most . For 2‐regular hypergraph of rank and any diameter D, we improve this bound to , where . Our construction of claw‐free graphs of diameter 2 yields a similar result for hypergraphs of diameter 2, degree 2, and any even rank .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.