Abstract

Proton exchange membrane fuel cells have attracted widespread attention due to their cleanliness and high energy density, but the performance degradation during operation greatly limits their commercialization. Therefore, the reliable degradation prediction of fuel cell performance is of great significance. The recovery phenomenon of the reversible voltage loss that occurs during the operation of fuel cells has posed great difficulties for model training and prediction. Moreover, the models may easily and erroneously learn the combined trends in the recovery of reversible voltage loss and performance degradation. To address this issue, this paper employs the Transformer model to predict the performance degradation of fuel cells. By utilizing the unique self-attention structure and masking mechanism of the Transformer model, the signal for the recovery of the reversible voltage loss is adopted as the input for the model to avoid interference from information before voltage recovery on subsequent predictions. Experimental results show that the model has the highest prediction accuracy at various prediction starting points. Meanwhile, it can predict the accelerated performance degradation of fuel cells, which has positive implications for health management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.