Abstract

A Pseudomonas isolated from sewage was adapted to use p-toluenesulfonate as the sole source of both carbon and sulfur. Very few of over 30 aromatic compounds tested were used for growth as sole carbon sources. Significantly, sulfobenzoate, phenolsulfonates, and isomers of cresolsulfonates did not support growth. Respirometry studies with washed, resting cells showed similar results. In both studies, benzenesulfonate was always used more rapidly than p-toluenesulfonate. The degradation of p-toluenesulfonate was shown to be over 90% of the theoretical value required for complete mineralization to carbon dioxide, water, and sulfate. When resting cells were incubated with 35S-p-toluenesulfonate, the ratio of oxygen uptake to 35S-sulfate liberation remained constant during the complete degradation period. Radiochromatographic analysis showed no 35S-aromatic intermediates in resting-cell supernatants at any time. Resting cells previously incubated with 35S-p-toluenesulfonate liberated two 35S-labeled aromatic intermediates upon disruption. Resting cells incubated with 1-14C-p-toluenesulfonate produced labeled 3-methylcatechol, labeled acetate, and unlabeled pyruvate. The labeled intermediate, 3-methylcatechol, was degraded by cell-free extracts to labeled acetate. Hydroxylation, desulfonation, ring cleavage, and subsequent fissions of the carbon chain occurred in that order; all steps but the first were catalyzed by cell-free extracts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.