Abstract

Oxidized Mg2Si films are annealed in low vacuum at various annealing temperature, and the degradation mechanism of Mg2Si during exploitation at high temperature is investigated. The crystal structure, surface morphology, depth profile, Raman scattering, and electrical properties are measured by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Hall effect system, respectively. XRD results show that MgO exists apparently in Mg2Si films, and as the annealing temperature increases, the content of MgO increases. The surfaces of films present distinct hexagon structures. The results of depth profiles show that the oxygen content decreases gradually from the surface to the subsurface. Raman spectroscopy analysis suggests that as the annealing temperature increases, the intensity of MgO peak enhances gradually. Hall measurement results indicate that the carrier concentration and mobility decrease significantly with the increase in annealing temperature. The films show n‐type at lower annealing temperature, while they present p‐type at higher annealing temperature, which indicates obvious conversions from n‐ to p‐type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.