Abstract

Step-stress experiments are performed in this paper to investigate the degradation mechanism of an AlGaN/GaN high electron mobility transistor (HEMT). It is found that the stress current shows a recoverable decrease during each voltage step and there is a critical voltage beyond which the stress current starts to increase sharply in our experiments. We postulate that defects may be randomly induced within the AlGaN barrier by the high electric field during each voltage step. But once the critical voltage is reached, the trap concentration will increase sharply due to the inverse piezoelectric effect. A leakage path may be introduced by excessive defect, and this may result in the permanent degradation of the AlGaN/GaN HEMT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.