Abstract
This paper investigates the degenerate scale problem for the Laplace equation and plane elasticity in a multiply connected region with an outer circular boundary. Inside the boundary, there are many voids with arbitrary configurations. The problem is analyzed with a relevant homogenous BIE (boundary integral equation). It is assumed that all the inner void boundary tractions are equal to zero, and tractions on the outer circular boundary are constant. Therefore, all the integrations in BIE are performed on the outer circular boundary only. By using the relation z * conjg( z) = a * a, or conjg( z) = a * a/ z on the circular boundary with radius a, all integrals can be reduced to an integral for complex variable and they can be integrated in closed form. The degenerate scale a = 1 is found in the Laplace equation and in plane elasticity regardless of the void configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.