Abstract

The profile of a stellar spectral line is formed by the transfer of radiation through the atmosphere by atomic processes in different chemical elements distributed usually unequally over the surface of a magnetic star.The theory of model atmospheres accounts for all possible physical conditions. Usually one assumes chemical homogeneity with a plane parallel atmosphere. The resulting line profile, however, is strongly deformed by the geometrical influence of the topographic element distribution and the magnetic surface field structure as well as the projection onto the line of sight of the outgoing radiation from all surface points and its integration over the visible disk.Line formation by the geometry of projection and element distribution is used for the inverse procedure of Doppler Imaging by V.L. Khokhlova and her followers. We consider here only the influence of the magnetic field on the line profile including the Stokes parameters -components. The large scatter of measuring points is partly due to the asymmetry of the line profiles!To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.