Abstract

Abstract The side relief faces of the monolithic involute gear hob are machined through relieving. The resulting surfaces are bevel helical surfaces in which the side cutting edges result from the intersection of these with the helical rake face. Theoretically, the gear hob is derived from an involute worm. Resharpening decreases the diameter of the hob, thus the edges became closer to the axis, and as a consequence they will be situated on a smaller worm than the original. The present paper analyses the deviation of the re-sharpened gear hob’s carrying worm from the theoretically perfect involute worm whose characteristic dimensions were adjusted considering the re-sharpened gear hob characteristic diameters. It was proven that the evolution of the errors is significantly different from that described in the literature. Thus, increasing the new gear hob diameters in comparison with the calculated dimensions is unnecessary, because it cannot reduce the error to half with this procedure. The mathematical model was built up accepting that the edges result from the intersection of an involute worm with a helical rake face and the side relief faces result from the rototranslation of the edges on a bevel helix leading curve dressed by the relieving parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call