Abstract

This article presents a review of the principal mechanisms responsible for the plastic deformation of nanocrystalline metals. As the concentration of grain boundaries increases, with a decrease in grain size there is a gradual shift in the relative importance of the deformation mechanisms away from the ones operating in the conventional polycrystalline domain. This is predicted by molecular dynamics simulations that indicate a preponderance of dislocation emission/annihilation at grain boundaries and grain-boundary sliding when grain sizes are in the range 20–50 nm. Experiments show, in general, a saturation in work hardening at low strains, which is indicative of a steady-state dislocation density. This saturation is accompanied by an increased tendency toward shear localization, which is supportive of dislocation generation and annihilation at grain boundaries. Dislocation analyses recently proposed corroborate the computational predictions and provide a rational foundation for understanding the mechanical response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call