Abstract

In present work, the deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment (SMAT) had been studied. The microstructure and mechanical properties of AZ31 Mg alloy with SMAT were investigated. The results indicated that a gradient nanostructure could be formed in sample by SMAT, in which the grain size increased gradually from surface to matrix. A depth-dependent gradient microhardness was also formed due to the corresponding gradient microstructure. Yield strength and ultimate tensile strength of AZ31 Mg alloy with SMAT were significantly improved combining with decrease of fracture elongation. The effect of SMAT on anisotropy of mechanical properties of AZ31 alloy had been discussed and analyzed. The plastic anisotropy of the sample increased significantly after SMAT, which was related to the texture variation of rolled sheet and special deformation behavior of gradient nanostructure. Finally, in order to illuminate the difference in deformation behavior between fine and coarse grained microstructure, the in-situ tensile deformation behavior of AZ31 Mg alloy with one-side gradient structure had been studied by SEM. The deformation mechanism of AZ31 Mg alloy with gradient structure had been put forward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.