Abstract
We consider the energy-supercritical nonlinear wave equation $u_{tt}-\Delta u+|u|^2u=0$ with defocusing cubic nonlinearity in dimension $d=5$ with no radial assumption on the initial data. We prove that a uniform-in-time {\it a priori} bound on the critical norm implies that solutions exist globally in time and scatter at infinity in both time directions. Together with our earlier works in dimensions $d\geq 6$ with general data and dimension $d=5$ with radial data, the present work completes the study of global well-posedness and scattering in the energy-supercritical regime for the cubic nonlinearity under the assumption of uniform-in-time control over the critical norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.