Abstract
With the advent in recent years of large financial data sets, machine learning and high-performance computing, analysts can backtest millions (if not billions) of alternative investment strategies. Backtest optimizers search for combinations of parameters that maximize the simulated historical performance of a strategy, leading to backtest overfitting.The problem of performance inflation extends beyond backtesting. More generally, researchers and investors tend to report only positive outcomes, a phenomenon known as selection bias. Not controlling for the number of trials involved in a particular discovery leads to over-optimistic performance expectations.The Deflated Sharpe Ratio (DSR) corrects for two leading sources of performance inflation: Selection bias under multiple testing and non-Normally distributed returns. In doing so, DSR helps separate legitimate empirical findings from statistical flukes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.