Abstract

This study outlines how results from a glutathione reactivity assay (so-called in chemico data) can be used to define the applicability domain for the nucleophilic aromatic substitution (SNAr) reaction for nitrogen-containing aromatic compounds. SNAr is one of the six mechanistic domains that have been shown to be important in toxicological endpoints in which the ability to bind covalently to a protein is a key molecular initiating event. This study has analysed experimental data (2 h RC50 values), allowing a clear and interpretable structure–activity relationship to be developed for pyridines and pyrimidines which reside within the SNAr domain. The in-ring nitrogen(s) act as activating groups in the SNAr reaction. The position(s) of the in-ring nitrogen(s) as well as other activating groups, especially in relationship to the leaving group, affect reactive potency. The experimentally defined applicability domain has resulted in a series of structural alerts. These results build on early work on the benzene derivatives residing in the SNAr domain. The definition of the applicability domain for the SNAr reaction and the resulting structural alerts are likely to be beneficial in the development of computational tools for category formation and read-across in hazard identification, and the development of adverse outcome pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.