Abstract
The defect of a function is defined as the difference between the measure of the positive and negative regions. In this paper, we begin the analysis of the distribution of defect of random Gaussian spherical harmonics. By an easy argument, the defect is non-trivial only for even degree and the expected value always vanishes. Our principal result is evaluating the defect variance, asymptotically in the high-frequency limit. As other geometric functionals of random eigenfunctions, the defect may be used as a tool to probe the statistical properties of spherical random fields, a topic of great interest for modern cosmological data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.