Abstract
The static defect structure of the oxygen ion conductor Y203 stabilized zirconia has been studied at room temperature by coherent diffuse neutron scattering from single crystal samples containing nominally 9.4, 12, 15 and 18 mol% Y203. There are two principal contributions to the observed diffuse intensity. The first arises from tetrahedral distortions in small vacancy free regions of the crystal which decrease in volume as the dopant level increases. The second arises from correlated vacancies and their associated relaxed ions in the remainder of the crystal. The 9.4 mol% sample has been studied at elevated temperatures. The scattering becomes partly quasielastic, but the correlations persist to the highest temperatures studied (1900°C). The temperature and Q-dependence of the energy width has been studied at selected positions in reciprocal space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica B+C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.