Abstract
Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit $d$-sphere ($d\ge 2$). We investigate the distribution of their defect i.e., the difference between the measure of positive and negative regions. Marinucci and Wigman studied the two-dimensional case giving the asymptotic variance (Marinucci and Wigman 2011) and a Central Limit Theorem (Marinucci and Wigman 2014), both in the high-energy limit. Our main results concern asymptotics for the defect variance and quantitative CLTs in Wasserstein distance, in any dimension. The proofs are based on Wiener-It\^o chaos expansions for the defect, a careful use of asymptotic results for all order moments of Gegenbauer polynomials and Stein-Malliavin approximation techniques by Nourdin and Peccati. Our argument requires some novel technical results of independent interest that involve integrals of the product of three hyperspherical harmonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.