Abstract

Abstract A central problem in climate and ocean modelling is the accurate simulation of the climatological state of the oceanic density field. A constant vertical diffusivity for heat and salt is frequently employed in ocean general circulation models (OGCMs) and it is usually assigned a value designed to optimize the depth of the pycnocline. One undesired consequence of this choice is a poor representation of the deep water, which is usually insufficiently stratified. In contrast to the uniform diffusivity of many models, some observational studies suggest that the vertical diffusivity is not constant but increases with depth, possibly in inverse proportion to the local buoyancy frequency. Numerical experiments with an OGCM are presented that demonstrate that allowing the vertical diffusivity to increase below the pycnocline substantially increases the stratification of the abyssal water mass of these models without significantly affecting the pycnocline depth, and hence may lead to a better representati...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.