Abstract

AbstractNowadays, machine learning (ML) has attained a high level of achievement in many contexts. Considering the significance of ML in medical and bioinformatics owing to its accuracy, many investigators discussed multiple solutions for developing the function of medical and bioinformatics challenges using deep learning (DL) techniques. The importance of DL in Internet of Things (IoT)-based bio- and medical informatics lies in its ability to analyze and interpret large amounts of complex and diverse data in real time, providing insights that can improve healthcare outcomes and increase efficiency in the healthcare industry. Several applications of DL in IoT-based bio- and medical informatics include diagnosis, treatment recommendation, clinical decision support, image analysis, wearable monitoring, and drug discovery. The review aims to comprehensively evaluate and synthesize the existing body of the literature on applying deep learning in the intersection of the IoT with bio- and medical informatics. In this paper, we categorized the most cutting-edge DL solutions for medical and bioinformatics issues into five categories based on the DL technique utilized: convolutional neural network, recurrent neural network, generative adversarial network, multilayer perception, and hybrid methods. A systematic literature review was applied to study each one in terms of effective properties, like the main idea, benefits, drawbacks, methods, simulation environment, and datasets. After that, cutting-edge research on DL approaches and applications for bioinformatics concerns was emphasized. In addition, several challenges that contributed to DL implementation for medical and bioinformatics have been addressed, which are predicted to motivate more studies to develop medical and bioinformatics research progressively. According to the findings, most articles are evaluated using features like accuracy, sensitivity, specificity, F-score, latency, adaptability, and scalability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.