Abstract

REE, Zr, Nb concentrations and Sr, Nd isotope compositions have been measured in Copley basalts and andesites, Balaklala rhyolites, and Mule Mountain trondhjemites (northern California) which represent the deep layers of a well preserved intra-oceanic island arc of Siluro-Devonian age. 87Sr/ 86Sr is shifted towards high values (up to 0.707) whereas Ce is preferentially removed from rhyolites. A large proportion of the analyzed samples including some acidic rocks shows a pronounced depletion in light REE. The ε Nd(T) values of most Copley, Balaklala, and Mule Mountain rocks fall in the range +6 to +8 which suggests that they originated from a normal MORB-type source ( ε Nd(T) ≈ +9 ) contaminated with either sediments or an OIB-type component. In modern island arcs, only the shallow levels are accessible: comparison with the Copley-Balaklala-Mule Mountain Series suggests that, at depth, an immature island arc is likely to comprise thick layers of LILE-depleted tholeiites and rhyolites intensely altered by pervasive circulation of seawater. Least-square solutions of trace element models suggest that rhyolites and trondhjemites represent remelting of mafic volcanics from the arc basement rather than residual melts of basalt-andesite differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call