Abstract

A comparison of the internal structure of Earth-like planets is unavoidable to understand the formation and evolution of the solar system, and the differences between Earth’s, Mars’, and Venus’ atmospheres, surfaces and tectonic behaviors. Recent studies point at the role of core structure and dynamics in the evolution of the atmosphere, mantle and crust. On Earth, the crust thickness and the radius and physical state of the cores are known for almost one century, since the advent of seismological observations, but the lack of long-term surface-based geodetic, electromagnetic and seismological observations on the other planets, results in very large uncertainties on the crust thickness, on the temperature and composition of their mantle, and on the size and physical state of their cores. According to the currently available geodetic data, Mars’ dimensionless mean-moment-of-inertia ratio is equal to 0.3653±0.0008. When combined with geochemical observations and with the inputs of laboratory experiments on planetary materials at high pressure and high temperature, this result constrains a narrow range of density values for Mars’ mantle and favors a light [6200–6765 kg m −3] sulfur-rich core, but it still allows for a 1600–1750 km range for the core radius, i.e. an uncertainty at least ten times larger than the precision obtained in 1913 by Gutenberg for the Earth’s core. Mars’ mantle density distribution may be explained by a large range of temperatures and mineralogical compositions, either olivine- or pyroxene-rich. The unknown mean thickness of Mars’ crust makes necessary a number of working assumptions for the interpretation of gravimetric and magnetic data. The situation is worse for Venus, and the most conservative model of its deep interior is a transposition of the Earth’s structure scaled to Venus’ radius and mass. The temperature conditions at the surface of this planet hardly make possible long-term ground-based measurements, but this is indeed feasible at the surface of Mars. Precise measurements of Mars’ crust thickness, core radius and structure, and the proof of the existence or absence of an inner core, would put tight constraints on mantle dynamics and thermal evolution, and on possible scenarios leading to the extinction of Mars’ magnetic field about 4.0 Ga ago. Long-lasting surface-based geodetic, seismological and magnetic observations would provide this information, as well as the distributions as a function of depth of the density, elastic and anelastic parameters, and electrical conductivity. Current studies on the structure of Earth’s deep interior demonstrate that the latter data set, when constrained by laboratory experiments, may be inverted in terms of temperature, chemical, and mineralogical compositions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call