Abstract
AbstractWe present a new formulation for the problem of electromagnetic scattering from perfect electric conductors. While our representation for the electric and magnetic fields is based on the standard vector and scalar potentials A,φ in the Lorenz gauge, we establish boundary conditions on the potentials themselves rather than on the field quantities. This permits the development of a well‐conditioned second‐kind Fredholm integral equation that has no spurious resonances, avoids low‐frequency breakdown, and is insensitive to the genus of the scatterer. The equations for the vector and scalar potentials are decoupled. That is, the unknown scalar potential defining the scattered field, φscat, is determined entirely by the incident scalar potential φinc. Likewise, the unknown vector potential defining the scattered field, Ascat is determined entirely by the incident vector potential Ainc. This decoupled formulation is valid not only in the static limit but for arbitrary ω ≥ 0$. © 2016 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.