Abstract
A principal ℝ + 5 -bundle over the usual Teichmuller space of ans times punctured surface is introduced. The bundle is mapping class group equivariant and admits an invariant foliation. Several coordinatizations of the total space of the bundle are developed. There is furthermore a natural cell-decomposition of the bundle. Finally, we compute the coordinate action of the mapping class group on the total space; the total space is found to have a rich (equivariant) geometric structure. We sketch some connections with arithmetic groups, diophantine approximations, and certain problems in plane euclidean geometry. Furthermore, these investigations lead to an explicit scheme of integration over the moduli spaces, and to the construction of a “universal Teichmuller space,” which we hope will provide a formalism for understanding some connections between the Teichmuller theory, the KP hierarchy and the Virasoro algebra. These latter applications are pursued elsewhere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.