Abstract
All nine species of marine phytoplankton tested (a cyanobacterium: Synechococcus sp., three diatoms: Chaetoceros simplex, Thalassiosira oceanica and Skeletonema costatum, two prymnesiophytes: Pleurochrysis carterae and Isochrysis galbana, a prasinophyte: Tetraselmis sp., a green alga: Dunaliella tertiolecta, and a dinoflagellate: Amphidinium carterae) were able to decompose hydrogen peroxide in the dark. Since these phytoplankton species can be found widely in a variety of marine sub-environments, this indicates that the dark decomposition of hydrogen peroxide by phytoplankton is a general phenomenon in the oceans. The decomposition rates were first order with respect to the concentration of hydrogen peroxide and biomass. The second-order rate constants for these nine species of phytoplankton ranged between 2 × 10 –4 and 2.7 × 10 –2 μg Chl- a –1 1 h –1. Synechococcus sp. and S. costatum were the most efficient, while P. carterae and D. tertiolecta were the least efficient decomposers. While the magnitudes and patterns in the changes were species-dependent, in general, increasing salinity, temperature, the presence of light and the depletion of nutrients enhanced the decomposition of hydrogen peroxide. The effect of growth phase was small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.