Abstract
Current measurements during a 32-day study period in late spring, 1977, are used to quantify the magnitude and relative importance of tidal and wind-driven motion in the interior of the Indian River lagoon, on the Atlantic coast of Florida. Harmonic analysis of the total longitudinal flow along the axis of the lagoon isolates the tidal component of the current; non-tidal flow is revealed by subtracting the tidal current from the total current, and making corrections for non-linear relationships between the current and both surface wind stress and bottom friction. A one-layer, one-dimensional model is developed to simulate wind drift. A quadratic bottom friction term with a drag coefficient of 15 × 10 −3 gives results which compare most favourably with observations. Results indicate that tidal forcing explains approximately 45% of the total variance at the study site, 25 km from the nearest inlet. Local wind forcing accounts for 44% of the non-tidal flow. The remainder of the variance is attributed to freshwater outflow through the lagoon and non-local forcing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.