Abstract

We propose a new model selection criterion based on the minimum description length principle in a name of the decomposed normalized maximum likelihood (DNML) criterion. Our criterion can be applied to a large class of hierarchical latent variable models, such as naive Bayes models, stochastic block models, latent Dirichlet allocations and Gaussian mixture models, to which many conventional information criteria cannot be straightforwardly applied due to non-identifiability of latent variable models. Our method also has an advantage that it can be exactly evaluated without asymptotic approximation with small time complexity. We theoretically justify DNML in terms of hierarchical minimax regret and estimation optimality. Our experiments using synthetic data and benchmark data demonstrate the validity of our method in terms of computational efficiency and model selection accuracy. We show that our criterion especially dominate other existing criteria when sample size is small and when data are noisy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.