Abstract

AbstractWe study the large time behavior of non‐negative solutions to the nonlinear fractional reaction–diffusion equation ∂tu = − tσ( − Δ)α ∕ 2u − h(t)up (α ∈ (0,2]) posed on and supplemented with an integrable initial condition, where σ ≥ 0, p > 1, and h : [0, ∞ ) → [0, ∞ ). Defining the mass , under certain conditions on the function h, we show that the asymptotic behavior of the mass can be classified along two cases as follows: if , then there exists M ∞ ∈ (0, ∞ ) such that ; if , then . Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.