Abstract
We review the recent progress in our understanding of the large scales in homogeneous (but anisotropic) turbulence. We focus on turbulence which emerges from Saffman-like initial conditions, in which the vortices possess a finite linear impulse. Such turbulence supports long-range velocity correlations of the form uiu′j=O(r−3), where u and u′ are separated by a distance r, and these long-range interactions dominate the dynamics of large eddies. We show that, for axisymmetric turbulence, the energy and integral scales evolve as u⊥2~u//2~t−6/5 and l⊥~l//~t2/5, where ⊥ and // indicate directions that are perpendicular and parallel to the symmetry axis, respectively. These predictions are consistent with the evidence of direct numerical simulations. Similar results are obtained for the passive scalar variance, where we find that θ2~t−6/5. The primary point of novelty in our discussion of passive scalar decay is that it is based in real (rather than spectral) space, making use of an integral invariant which is a generalization of the isotropic Corrsin integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.