Abstract

The importance of dispersion interactions in many chemical processes is well recognized. It is known that the dispersion strength would decay with the increasing separation between the interacting groups; however, its effects on chemical reactivity have not been well understood. Here we reveal the decay law of dispersion interactions along the n-alkyl chain, its effective interaction ranges for common functional groups, and their remarkable effects on the kinetics of activation reactions involving alkyl chains. This is achieved by DLPNO-CCSD(T) calculations and the local energy decomposition analysis and is supported by experimental findings. In particular, our calculations indicate that the lifetime of alkyl-substituted cis-azobenzenes increases with the alkyl chain length but reaches a steady value when alkyl chains are longer than butyl groups, which is in satisfactory accordance with experimental measurements. We also propose a concise expression to describe the dispersion decay, which shows excellent agreement with our computed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call