Abstract
We provide a computationally and statistically efficient method for estimating the parameters of a stochastic covariance model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the Debiased Spatial Whittle likelihood, makes important corrections to the well-known Whittle likelihood to account for large sources of bias caused by boundary effects and aliasing. We generalize the approach to flexibly allow for significant volumes of missing data including those with lower-dimensional substructure, and for irregular sampling boundaries. We build a theoretical framework under relatively weak assumptions which ensures consistency and asymptotic normality in numerous practical settings including missing data and non-Gaussian processes. We also extend our consistency results to multivariate processes. We provide detailed implementation guidelines which ensure the estimation procedure can be conducted in operations, where n is the number of points of the encapsulating rectangular grid, thus keeping the computational scalability of Fourier and Whittle-based methods for large data sets. We validate our procedure over a range of simulated and realworld settings, and compare with state-of-the-art alternatives, demonstrating the enduring practical appeal of Fourier-based methods, provided they are corrected by the procedures developed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society. Series B, Statistical methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.