Abstract

To investigate the mechanisms underlying accurate pre-mRNA splicing, we developed an in vitro assay sensitive to proofreading of 5' splice site cleavage. We inactivated spliceosomes by disrupting a metal-ligand interaction at the catalytic center and discovered that, when the DEAH box ATPase Prp16 was disabled, these spliceosomes catalyzed 5' splice site cleavage but at a reduced rate. Although Prp16 does not promote splicing of a genuine substrate until after 5' splice site cleavage, we found that Prp16 can associate with spliceosomes before 5' splice site cleavage, consistent with a role for Prp16 in proofreading 5' splice site cleavage. We established that Prp16-mediated rejection is reversible, necessitating a downstream discard pathway that we found requires the DEAH box ATPase Prp43, a spliceosome disassembly factor. These data indicate that spliceosomes distinguish slow substrates and that the mechanisms for establishing the fidelity of 5' splice site cleavage and exon ligation share a common ATP-dependent framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call