Abstract
The endoplasmic reticulum (ER) is involved in Ca(2+) signaling and protein processing. Accumulation of unfolded proteins following ER Ca(2+) depletion triggers the ER stress response (ERSR), which facilitates protein folding and removal of damaged proteins and can induce cell death. Unfolded proteins bind to chaperones, such as the glucose-regulated protein (GRP)78 and cause the release of GRP78-repressed proteins executing ERSR. Several glioma cell lines and primary astrocytes were used to analyze ERSR using standard western blots, reverse transcription-PCR, viability assays, and single cell Ca(2+) imaging. ERSR induction with thapsigargin results in a more intense ERSR associated with a larger loss of ER Ca(2+), activation of ER-associated caspases (4/12) and caspase 3, and a higher rate of malignant glioma cell death than in normal glial cells. Malignant glioma cells have higher levels of protein synthesis and expression of the translocon (a component of the ribosomal complex, guiding protein entry in the ER), the activity of which is associated with the loss of ER Ca(2+). Our experiments confirm increased expression of the translocon in malignant glioma cells. In addition, blockade of the ribosome-translocon complex with agents differently affecting translocon Ca(2+) permeability causes opposite effects on ERSR deployment and death of malignant glioma cells. Excessive ER Ca(2+) loss due to translocon activity appears to be responsible for the enhancement of ERSR, leading to the death of glioma cells. The results reveal a characteristic of malignant glioma cells that could be exploited to develop new therapeutic strategies to treat incurable glial malignancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.