Abstract

Abstract. Fossil fuel resources are invaluable to economic growth and social development. Understanding the formation and distribution of fossil fuel resources is critical for the search and exploration of them. Until now, the vertical distribution depth of fossil fuel resources has not been confirmed due to different understandings of their origins and the substantial variation in reservoir depths from basin to basin. Geological and geochemical data of 13 634 source rock samples from 1286 exploration wells in six representative petroliferous basins were examined to identify the maximum burial depth of active source rocks in each basin, which is referred to in this study as the active source rock depth limit (ASDL). Beyond the ASDL, source rocks no longer generate or expel hydrocarbons and become inactive. Therefore, the ASDL also sets the maximum depth for fossil fuel resources. The ASDLs of basins around the world are found to range from 3000 to 16 000 m, while the thermal maturities (Ro) of source rocks at the ASDLs are almost the same, with Ro ≈3.5±0.5 %. The Ro of 3.5 % can be regarded as a general criterion to identify ASDLs. High heat flow and more oil-prone kerogen are associated with shallow ASDLs. In addition, tectonic uplift of source rocks can significantly affect ASDLs; 21.6 billion tons of reserves in six representative basins in China and 52 926 documented oil and gas reservoirs in 1186 basins around the world are all located above ASDLs, demonstrating the universal presence of ASDLs in petroliferous basins and their control on the vertical distribution of fossil fuel resources. The data used in this study are deposited in the repository of the PANGAEA database at: https://doi.org/10.1594/PANGAEA.900865 (Pang et al., 2019).

Highlights

  • Fossil fuel resources, including coal and conventional and unconventional hydrocarbons, account for 85.5 % of the world total energy consumption in 2016

  • Previous geochemical and sedimentological data demonstrate that the source rocks are mainly Permian shales and that the main reservoirs are the clastic rocks in the Permian, the Triassic, and the Jurassic formations capped by the Upper Triassic, the Lower Jurassic, and the Lower Cretaceous mudstones, respectively (Cao et al, 2005)

  • A few Carboniferous volcanic reservoirs are found distributed in structural highs near fault zones and unconformities, and the hydrocarbons in these reservoirs are primarily derived from the Permian shales (Chen et al, 2016; Wang et al, 2018)

Read more

Summary

Introduction

Fossil fuel resources, including coal and conventional and unconventional hydrocarbons, account for 85.5 % of the world total energy consumption in 2016 (B.P. Global, 2017). One major challenge for deep oil and gas exploration comes from the significant variation in reservoir depths in different basins and the uncertainty it poses to oil and gas resource assessment. Supports that oil and gas are of biogenic origin and suggests that the maximum depth of oil and gas reservoirs is critically controlled by the depth of active source rocks which generate and expel oil and gas in sedimentary basins (Tissot and Welte, 1978; Durand, 1980; Hunt, 1996)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call