Abstract

Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.

Highlights

  • Adaptation to different environments requires a sophisticated and complex gene expression system, allowing bacteria to quickly regulate mRNA abundance and thereby protein synthesis

  • Our study revealed for the first time that part of the cold sensitivity is related to the inability of the bacterium to adapt the cytoplasmic membrane to lower temperatures

  • We propose that straight-chain fatty acid synthesis, reduced to sustain growth at lower temperature, is maintained due to inefficient turnover of the pyruvate dehydrogenase mRNA, leading to elevated acetyl-CoA levels

Read more

Summary

Introduction

Adaptation to different environments requires a sophisticated and complex gene expression system, allowing bacteria to quickly regulate mRNA abundance and thereby protein synthesis. Global scale mRNA half-life measurements showed that absence of CshA slightly increases the stability of the bulk mRNA and more significantly a subset of about hundred genes, corroborating a general function of CshA in mRNA decay [9]. In addition to these functions, an RNA protective role of CshA has been proposed where the helicase protects some mRNAs upon MazE toxin induction [10], but this has not been studied further. These data suggest that the CshA DEAD-box RNA helicase might have various functions in RNA metabolism

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.