Abstract
In the first part we deepen the six-functor theory of (holonomic) logarithmic D-modules, in particular with respect to duality and pushforward along projective morphisms. Then, inspired by work of Ogus, we define a logarithmic analogue of the de Rham functor, sending logarithmic D-modules to certain graded sheaves on the so-called Kato–Nakayama space. For holonomic modules we show that the associated sheaves have finitely generated stalks and that the de Rham functor intertwines duality for D-modules with a version of Poincaré–Verdier duality on the Kato–Nakayama space. Finally, we explain how the grading on the Kato–Nakayama space is related to the classical Kashiwara–Malgrange V-filtration for holonomic D-modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.