Abstract

One of the most basic tasks of every cell is the synthesis of ribosomes, yet the process is so complex that we are only beginning to comprehend it. In human cells, the final product contains four RNAs and 79 proteins forming a large ribonucleoprotein, the ribosome. About twice as many factors are involved in assembly of these protein synthesizing machines. Additionally, some 200 small nucleolar ribonucleoproteins (snoRNPs) function in the modification of pre-ribosomal RNA (pre-rRNA) at a similar number of ribonucleotides. Modification is essential for proper function and biogenesis of ribosomes (Decatur and Fournier 2002; Sloan et al. 2016). While abrogation of individual modifications has little to no measurable effects, removal of a combination of modifications or of all causes severe to lethal effects. Modifications mostly cluster around the functional centers of the ribosome and some modifications are important for ribosome assembly. The subject of this perspective is to raise awareness to how modification at so many sites can be achieved while the pre-rRNA is being processed, folded and re-folded, and assembled with ribosomal proteins to yield the pre-ribosomal subunits in the nucleolus (Baßler and Hurt 2019). This is not a comprehensive review but a simplification of complex issues providing access to the general reader.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.