Abstract
The black caiman is one of the largest neotropical top predators, which means that it could play a structuring role within swamp ecosystems. However, because of the difficulties inherent to studying black caimans, data are sorely lacking on many aspects of their general biology, natural history, and ecology, especially in French Guiana. We conducted a detailed study of the Agami Pond black caiman population using a multidisciplinary approach. The aim was to better understand the species’ dietary ecology and movements in the pond, and thus its functional role in pond system. We gathered natural history data, tracked caiman movements using satellite transmitters, and characterized feeding ecology via stable isotope analysis. Our study was carried out over three sampling periods and spanned both wet and dry seasons, which differ in their hydrological and ecological conditions. Our results show that black caiman abundance and age demographics differed between seasons in Agami Pond. In the dry season, Agami Pond is one of the only areas within the marsh to hold water. It thus contains large quantities of different fish species, which form the basis of the black caiman’s diet. Caiman body size, a proxy for age class, was around 1.5 meters. During the wet season, which corresponds to the breeding period for migratory birds (e.g., Agami herons), adult black caimans are present in Agami Pond. Adults were most abundant in the inundated forest. There, most individuals measured up to 2 meters. They also exhibited a particular “predatory” behavior near bird nests, preying on fallen chicks and adults. Juveniles and subadults were present during both seasons in the pond’s open waters. These behavioral observations were backed up by stable isotope analysis, which revealed ontogenetic variation in the caiman’s isotopic values. This isotopic variation reflected variation in diet that likely reduced intraspecific competition between adults and young. The telemetry and microchip data show that different age classes had different movement patterns and that seasonal variation in the pond may influence caiman prey availability and reproductive behavior. The new information gathered should help predict this species’ responses to potential ecosystem disturbance (e.g., water pollution, habitat destruction) and inform the development of an effective conservation plan that involves locals and wildlife officials.
Highlights
Between the estuary of the Amazon River in Brazil and the Cayenne Peninsula in French Guiana lies a series of large mangrove swamps
Preliminary research has since shown that this pond is used by a population of black caimans (Melanosuchus niger [2]) and that it is the most important breeding site in French Guiana for many species of birds
The results suggest that the Kaw Marsh population is isolated from the much larger ancestral populations in Brazil, and, the black caiman is rarely seen in other French Guianan coastal wetlands [12]
Summary
Between the estuary of the Amazon River in Brazil and the Cayenne Peninsula in French Guiana lies a series of large mangrove swamps. Of these mostly stagnant wetlands, the Kaw-Roura Marshes are the most distant from the estuary (a biodiversity hot spot; National Nature Reserve 1998—Ramsar 1993). They are located southeast of Cayenne and cover an area of 94,700 ha. One, Agami Pond, is unique in being surrounded by shrub communities [1] To study this unique and largely uncharacterized ecosystem, a floating scientific platform, only accessible by helicopter, was built in 2001. Agami Pond hosts the largest population of the Agami heron (Agami agamia): 1,500 breeding pairs [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.