Abstract

L-arginine is a semi-essential amino acid involved in a variety of physiological processes in the central nervous system (CNS). It is essential in the survival and functionality of neuronal cells. Nonetheless, L-arginine also has a dark side; it potentiates neuroinflammation and nitric oxide (NO) production, leading to secondary damage. Therefore, modulating the L-arginine metabolism is challenging because both detrimental and beneficial effects are dependent on this semi-essential amino acid. After spinal cord injury (SCI), L-arginine plays a crucial role in trauma-induced neuroinflammation and regenerative processes via the two key enzymes: nitric oxide synthase (NOS) and arginase (ARG). Studies on L-arginine metabolism using ARG and NOS inhibitors highlighted the conflicting role of this semi-essential amino acid. Similarly, L-arginine supplementation resulted in both negative and positive outcomes after SCI. However, new data indicate that arginine depletion substantially improves spinal cord regeneration after injury. Here, we review the challenging characteristics of L-arginine metabolism as a therapeutic target after SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call