Abstract

Mutations in the α-cardiac actin ACTC1 gene cause dilated or hypertrophic cardiomyopathy. These diseases are the result of changes in protein interactions between ACTC protein and force-generating β-myosin or the calcium-dependent cardiac-tropomyosin (cTm) and cardiac troponin (cTn) regulatory complex, altering the overall contractile force. The T126I and S271F ACTC variants possess amino acid substitutions on the other side of actin relative to the myosin or regulatory protein binding sites on what we call the “dark side” of actin. The T126I change results in hyposensitivity to calcium, in accordance with the calcium sensitivity pathway of cardiomyopathy development while the S271F change alters the maximum in vitro motility sliding speed, reflecting a change in maximum force. These results demonstrate the role of actin allostery in the cardiac disease development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call