Abstract

The properties of slow MHD waves in a two dimensional model are investigated, in a low-beta plasma. Including a horizontal density variation causes phase mixing and coupling between slow and fast MHD waves. The effects of different density profiles, different driving frequencies, different values for the viscosity coefficient and plasma beta (<1) are studied. Using numerical simulations, it was found that the behaviour of the perturbed velocity was strongly dependent on the values of the parameters. From analytical approximations, a strong interaction with the fundamental, normal modes of the system was found to play an important role. The coupling to the fast wave proved to be an inefficient way to extract energy from the driven slow wave and is unlikely to be responsible for the rapid damping of propagating slow MHD waves, observed by TRACE. The phase mixing of the slow waves due to the (horizontal) density inhomogeneity does cause a significant amount of damping, but is again unlikely to be sufficiently strong to explain the rapid observed damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.