Abstract

The \(^{3}\)He impurity influence on the oscillations of a quartz resonator and thus its drag coefficient in a laminar flow of a superfluid \(^{3}\)He–\(^{4}\)He mixture has been investigated. The temperature dependences of the resonance curves were measured on quartz tuning forks with a resonance frequency 32 kHz in vacuum in superfluid mixtures with \(^{3}\)He concentrations of \(x_{3}=0.05\) and 0.15 in a wide range of driving forces at temperatures from 0.5–2.5 K. The results obtained were used to plot the temperature dependence of the drag coefficient. With the help of the normalization on the effective area of the oscillating body, the concentration dependence of the drag coefficient of the quartz tuning fork and the vibrating sphere in superfluid solutions has been constructed and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call